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A B S T R A C T   

Background and objective: Compared to the conventional magnetization-prepared rapid gradient-echo imaging 
(MPRAGE) MRI sequence, the specialized magnetization prepared 2 rapid acquisition gradient echoes 
(MP2RAGE) shows a higher brain tissue and lesion contrast in multiple sclerosis (MS) patients. The goal of this 
work is to retrospectively generate realistic-looking MP2RAGE uniform images (UNI) from already acquired 
MPRAGE images in order to improve the automatic lesion and tissue segmentation. 
Methods: For this task we propose a generative adversarial network (GAN). Multi-contrast MRI data of 12 healthy 
controls and 44 patients diagnosed with MS was retrospectively analyzed. Imaging was acquired at 3T using a 
SIEMENS scanner with MPRAGE, MP2RAGE, FLAIR, and DIR sequences. We train the GAN with both healthy 
controls and MS patients to generate synthetic MP2RAGE UNI images. These images were then compared to the 
real MP2RAGE UNI (considered as ground truth) analyzing the output of automatic brain tissue and lesion 
segmentation tools. Reference-based metrics as well as the lesion-wise true and false positives, Dice coefficient, 
and volume difference were considered for the evaluation. Statistical differences were assessed with the Wil
coxon signed-rank test. 
Results: The synthetic MP2RAGE UNI significantly improves the lesion and tissue segmentation masks in terms of 
Dice coefficient and volume difference (p-values < 0.001) compared to the MPRAGE. For the segmentation 
metrics analyzed no statistically significant differences are found between the synthetic and acquired MP2RAGE 
UNI. 
Conclusion: Synthesized MP2RAGE UNI images are visually realistic and improve the output of automatic seg
mentation tools.   

1. Introduction 

Magnetic resonance imaging (MRI) plays a crucial role in multiple 
sclerosis (MS) as it is the imaging technique of choice for diagnosing the 
disease and monitoring its progression [1]. MRI for MS includes both 
T1-weighted and T2-weighted sequences. T1-weighted images are 

commonly preferred for visualizing the anatomy of the brain and 
quantifying normal appearing gray matter (GM) and white matter 
(WM), but are also helpful for detecting lesional tissue in MS patients 
[2]. Currently, one of the most used T1-weighted sequences at high 
magnetic field (3T) is the three-dimensional magnetization-prepared 
rapid gradient-echo imaging (3D MPRAGE) [3]. This sequence offers 

* Corresponding author. Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne, Switzerland. 
E-mail address: francesco.larosa@epfl.ch (F. La Rosa).  

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: http://www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2021.104297 
Received 20 December 2020; Received in revised form 8 February 2021; Accepted 22 February 2021   

mailto:francesco.larosa@epfl.ch
www.sciencedirect.com/science/journal/00104825
https://http://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.104297
https://doi.org/10.1016/j.compbiomed.2021.104297
https://doi.org/10.1016/j.compbiomed.2021.104297
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.104297&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Biology and Medicine 132 (2021) 104297

2

accurate anatomical images of the brain in a reasonable acquisition time 
(about 5 min) and is routinely included in the standard clinical 
protocols. 

An extension of the MPRAGE is the so-called magnetization prepared 
2 rapid acquisition gradient echoes (MP2RAGE) [4]. This specialized 
sequence combines two images acquired at different inversion times, 
creating T1-weighted uniform images (UNI) with excellent tissue 
contrast and self-correction for B1- bias field. Moreover, in addition to 
the UNI, a T1 relaxation map (T1 map) can also be concurrently ob
tained from the same acquisition. Although the T1 map provides 
important quantitative information, the UNI image is the one primarily 
used for both visual and automatic inspection. To the best of our 
knowledge, the T1 maps are not exploited for tissue or lesion segmen
tation by any automatic methods. For this reason, we focus on the UNI 
images, and throughout this work, by MP2RAGE we refer to its UNI 
image. 

The MP2RAGE has been shown to yield an improved tissue seg
mentation compared to the MPRAGE with classical segmentation tools 
optimized for conventional T1 contrasts [5,6]. Additionally, further 
studies [7,8] have described its valuable application to MS patients, 
obtaining an improved lesion visualization and detection, in particular 
regarding cortical lesions (CLs). Currently, despite its promising added 
value, MP2RAGE remains mainly in research settings as changing the 
MRI clinical protocols is a lengthy process. It would thus be highly 
beneficial if MP2RAGE-like images could be estimated from current 
MPRAGE acquisitions in order to benefit from the enhanced tissue 
contrast of MP2RAGE without waiting for its clinical adoption. 

In the last decade, a class of deep learning algorithms called gener
ative adversarial networks (GANs) [9] have emerged as the 
state-of-the-art technique for generating new synthetic data. Their two 
main components are a generator, responsible for synthesizing new 
realistic data from a given input, and a discriminator, whose goal is to 
distinguish real and synthetic data. The generator and discriminator are 
trained simultaneously in competition with each other, and this results 
in realistic-looking data being produced. GANs are especially effective 
with images, exploiting convolutional neural networks (CNNs) for their 
generator and discriminator. Starting from the computer vision field, 
they are finding several broad applications and have been recently 
explored also for medical imaging [10]. Considering that data scarcity 
and class imbalance often represent an obstacle for training CNNs, GANs 
have arguably several potential applications also in the medical field. 
Their main drawback, however, is that in some cases they introduce 
artefacts or unrealistic details, which cannot be tolerated in the clinical 
context either for diagnosis or for follow up purposes. 

GANs have been explored for MRI for image reconstruction [11], to 
increase the image resolution [12], augmenting and increasing dataset 
size [13], as well as generating new contrasts or converting MRI images 
to computed tomography (and vice-versa) [14]. Specifically for MS 
patients, they have been shown to be an effective method for data 
augmentation [15] and also for generating realistic-looking MRI con
trasts. Recently, Finck et al. [16] have proposed a GANs for the gener
ation of synthetic double inversion recovery (DIR) images starting from 
standard MRI acquisitions as T1, T2, and fluid-attenuated inversion re
covery (FLAIR) of MS patients. Two independent readers then evaluated 
the images, showing that the synthetic DIR was able to depict signifi
cantly more MS lesions compared to the conventional FLAIR. This could 
have an important application for MS diagnosis. However, as argued by 
Hagiwara et al. in a recent editorial article [17], adding a synthetic 
contrast implicitly requires additional time by the experts to analyze it. 
They conclude mentioning that it would be interesting to explore how an 
automatic lesion segmentation method would perform with it. Notably, 
CNNs are inspired by the human brain’s learning process, but their way 
of extracting and combining features does not necessarily reflect what 
experts do. 

In this work, we propose a GAN that, through a pixel-by-pixel image 
translation process, synthesizes the MP2RAGE images corresponding to 

the input MPRAGE images. The GAN is trained on a dataset consisting of 
12 healthy controls and 8 MS patients with axial, sagittal, and coronal 
2D slices. The trained model is then tested on 36 MS patients in the early 
stages of the disease. The synthetised images are evaluated in two ways. 
First, we compare the MPRAGE images to the synthesized MP2RAGE 
images using quality metrics. Second, we compare differences in the 
segmentation of these images using two different automated methods: a 
supervised MS lesion segmentation CNN [19] and an unsupervised tissue 
segmentation approach [20]. 

2. Materials and method 

2.1. Subjects 

In this study, we consider a cohort of 56 subjects (36 female/20 male, 
mean age 34 ± 9, age range [20-61] years). Of these, 12 are healthy 
controls, and the remaining 44 MS patients diagnosed with relapsing- 
remitting MS according to the McDonald criteria [2]. These patients 
were at early stages of the disease: the mean disease duration was (1.9 ±
1.5) years and the Expanded Disability Status Scale (EDSS) scores ranged 
from 1 to 2 (mean 1.5 ± 0.3). 

2.2. Imaging 

Imaging was acquired on a 3T MRI whole-brain scanner (MAGNE
TOM Trio, Siemens Healthcare, Erlangen, Germany) with the following 
3D sequences (acquired in the sagittal plane) with a resolution of 1 × 1 
× 1.2 mm3: 3D FLAIR (field-of-view = 256 × 240 × 176, TR/TE/TI =
5000,394,1800 ms, flip angle = 120◦, acquisition time = 6 min), 3D 
MPRAGE (field-of-view = 256 × 240 × 160, TR/TE/TI = 2300,2.98,900 
ms, flip angle = 7◦, acquisition time = 5 min), DIR (field-of-view = 256 
× 240 × 160, TR/TE/TI1/TI2 = 10000,218,450/3650 ms, flip angle =
90◦, acquisition time = 13 min), and MP2RAGE (field-of-view = 256 ×
240 × 176, TR/TE/TI1/TI2 = 5000,2.89,700,2500, flip angles = 4◦/5◦, 
acquisition time = 8 min). In the following sections we will refer to 
FLAIR and MPRAGE as "conventional sequences", as these are part of the 
clinical protocol, and to DIR and MP2RAGE as "specialized sequences", 
as these are mainly used in a research setting. 

The study was approved by the Ethics Committee of our institution, 
and all subjects gave written informed consent prior to participation. 

2.3. Manual segmentation 

A radiologist and a neurologist, with 7 and 11 years of experience in 
MS research respectively, detected white matter lesions (WMLs) and CLs 
by consensus on the MS patients’ scans using all four imaging modalities 
and the three orthogonal planes. A trained technician then manually 
delineated all the lesions considering again both the conventional and 
advanced sequences using ITK-SNAP [21]. Importantly, pathological 
validation remains the ultimate gold standard for lesion detection, 
whereas this work does not aim at evaluating the MRI sensitivity 
compared to pathology. 

2.4. Generative adversarial network 

The goal of image-to-image translation networks is to learn the 
mapping between an input and an output image. GANs have been suc
cessfully proposed as a solution for this task, where the generator learns 
this mapping, while the competing discriminator pushes it to further 
improve. One of the first and top-performing image-to-image translation 
networks proposed is the pix2pix architecture [18]. This is a 
general-purpose GAN which includes a U-Net-like CNN as generator, 
and a PatchGAN as discriminator. It has been applied to a wide range of 
tasks, such as translating day photographs to night ones or sketches to 
photographs [18]. Pix2pix combines a common pixel-wise L1 loss with 
the adversarial loss of the discriminator, showing how the latter 
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consistently helps improve the results. 
Proposed framework. Inspired by the pix2pix architecture [18], we 

propose a pixel-wise translation network that receives as input MPRAGE 
images and outputs realistic-looking MP2RAGE ones (synMP2RAGE). 
The original implementation is adapted with additional residual blocks 
in the generator increasing the overall number of parameters. Moreover, 
as proposed by Kupyn et al. [22], we include a global skip connection 
between the input and the output of the last layer of the generator. In 
this way, the CNN learns a residual correction to the input MPRAGE 
image. This empirically decreased the training time and improved the 
generator robustness. The architecture of the generator is illustrated in 
Fig. 1 (see the Supplementary material for more details). Contrary to 
pix2pix, our discriminator classifies at each iteration the entire image as 
either real or fake, and it is composed of five convolutional layers, each 
one followed by a Leaky ReLu activation function. The downsampling is 
learned through the convolutions and no max-pooling or 
fully-connected layers are present, as recommended in a previous work 
[23]. The complete fully-convolutional discriminator’s architecture has 
about 50k trainable parameters (see Table 2 in the Supplementary 
material). 

Loss functions. The first loss considered is the pixel-wise mean ab
solute error (L1 loss) between the images produced by the generator and 
the target ones, as used in most works in the literature [12,18,22]. The 
second loss is given by the ability of the generator of fooling the 

discriminator. This is computed as the sigmoid cross-entropy (adversa
rial loss) between the discriminator output and an array of 0s and 1s, 
where the 0s represent fake images and the 1s real ones. MRI acquisi
tions, however, are considerably affected by noise, and the L1 and the 
adversarial losses are not sufficient to produce realistic-looking images. 
In order to account also for the visual quality of the produced MP2RAGE 
considering overall spatial features/textures, we added a perceptual 
loss. This is computed as the mean absolute error between the feature 
maps of the fourth convolutional layer of the pre-trained VGG-16 model 
produced by the real and the synthesized MP2RAGE. The fourth layer 
was chosen as it gave the best results experimentally and it is as well in 
accordance with a previous work on MRI [24]. Deeper layers extract 
more abstract features and did not seem to be beneficial for our scope. 
The perceptual loss, together with the adversarial one, is responsible for 
making the images look more realistic. Empirically, we observed that 
they prevented the network from over-smoothing the synthesized 
MP2RAGE, which is also observed to occur in the use of perceptual 
losses in computer vision [25,26]. Summing up, the total loss is given by:  

LTot = (α *L1) + (β * Lperceptual) + Ladversarial                                            

Where α and β were set to 150 and 5, respectively. Generator and 
discriminator are trained and updated simultaneously at each iteration 
with the relative losses, refer to Fig. 2 for a scheme of the framework. 

Fig. 1. Scheme of the generator of the GAN proposed. For more details see Table 1 of the Supplementary material.  

Fig. 2. Scheme of the generative framework proposed. The three loss functions used are highlighted in red.  
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2.5. Pre-processing 

First, each MPRAGE acquisition in our dataset is rigidly registered to 
the corresponding MP2RAGE UNI using ELASTIX [27]. Second, the 
MPRAGE image is skull-stripped with ANTs [20] and the brain mask is 
applied to the MP2RAGE image. This step is necessary in order to 
remove the noise present outside the brain in the MP2RAGE. Finally, 
both volumes for each subject are normalized to zero mean and standard 
deviation of one. 

2.6. Training details 

For each input 3D MPRAGE volume, we extracted 150 × 150 pixel 
slices across the three orthogonal views of the brain (axial, coronal, and 
sagittal planes). The 9000 2D slices obtained in this way were then 
concatenated together. This particular size was chosen as it includes the 
entire brain for all subjects. Data augmentation is then performed in 
order to prevent overfitting. In particular, we randomly crop 128 × 128 
or 64 × 64 images at each iteration. The latter ones are then resized to 
the 128 × 128 input size using bilinear interpolation. Moreover, random 

flipping along both axes is applied. The images obtained are then fed as 
input to the generator with a mini-batch size of 1. The initial learning 
rate set is 1e-5 with Adam [28] as optimizer for both the generator and 
the discriminator. 

The generative framework has been developed in Tensorflow 2.1.0 
[29] using one NVIDIA Tesla P100 GPU. The code is deployed as a 
Jupyter Google Colaboratory1 notebook which simply runs on the 
internet browser of any computer taking advantage of the free GPU 
usage available in Colaboratory. The code is available on our research 
website.2 

2.7. Inference 

At inference time the MPRAGE is skull-stripped, normalized to zero 
mean and unit standard deviation, and zero-padded, obtaining 256 ×
256 pixels slices in each of the three different planes. As the generator’s 

Fig. 3. Qualitative results showing the synMP2RAGE compared to the acquired one and the MPRAGE.  

1 www.colab.research.google.com.  
2 https://github.com/FrancescoLR/synMP2RAGE. 
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architecture is fully-convolutional, these inference input dimensions are 
arbitrary and can be chosen depending on the testing images. The 
generator is then tested separately with the transversal, coronal and 
sagittal images. The three output volumes are finally averaged to obtain 
the final synthetic MP2RAGE image. The inference process takes about 
50 s per subject on a UNIX machine equipped with a GPU Tesla P-100 
from NVIDIA. 

3. Evaluation 

3.1. Qualitative evaluation 

In order to identify possible artificial artefacts introduced by the 
GAN, an image analysis expert, with more than 20 years of experience in 
brain MRI, carefully examined, slice-by-slice and in all three orthogonal 
planes, the 36 synMP2RAGE images of the testing dataset. In a second 
assessment, the artefacts found were then analyzed in comparison with 
the corresponding MPRAGE images. 

3.2. Quantitative evaluation 

In order to quantitatively compare the synMP2RAGE and the 
MPRAGE with the original MP2RAGE we computed three widely used 
reference-based similarity metrics [12,16]: peak signal-to-noise ratio 
(PSNR), normalized root mean square error (NRMSE) and mean struc
tural similarity index (SSIM). The metrics were computed per subject, 
considering the skull-stripped images, and averaged across the entire 

testing dataset. 

3.3. Automatic segmentation 

We propose to test two different automated segmentation ap
proaches in order to objectively evaluate the benefits of analyzing syn
thetic MP2RAGE images compared to the commonly acquired MPRAGE. 
We considered two different methods: 

● Atropos [20], an unsupervised approach for brain tissue segmenta
tion distributed with ANTs. This is a Bayesian method that aims at 
solving the expectation-maximization algorithm modelling the class 
intensities with either parametric or non-parametric finite mixtures. 
We initialized the algorithm with k-means and selected 3 classes to 
be segmented: WM, GM and cerebrospinal fluid (CSF). The likelihood 
model chosen was a Gaussian and ran for 5 iterations. All other pa
rameters were the default ones. Prior to running Atropos, all scans 
were skull-stripped and normalized for bias field inhomogeneities 
with ANTs. 

● A CNN recently proposed for MS lesion segmentation [19]. This ar
chitecture is based on the 3D U-Net and was specifically adapted to 
detect both cortical and white matter lesions with high accuracy. We 
evaluated the CNN, setting all the default parameters, with a 3 folds 
cross-validation over the 36 testing cases. Four different combina
tions of MRI contrasts as input for the segmentation were considered: 
FLAIR-MPRAGE, FLAIR-MP2RAGE, FLAIR-DIR, and 

Fig. 4. Motion artefacts observed in the qualitative analysis. In a.,b.,c. different artefacts are present both in the MPRAGE and synMP2RAGE, but not in the 
MP2RAGE. In d. the MP2RAGE is affected by strong motion artefacts which are not observed in the MPRAGE and synMP2RAGE. 
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FLAIR-synMP2RAGE. Prior to training, the second contrast was 
rigidly registered to the FLAIR space with ELASTIX25. 

Automated segmentations were assessed computing the Dice coeffi
cient and volume difference for the brain tissues and the detection rate, 
Dice coefficient, and volume difference for the cortical and white matter 
lesions. 

3.4. Statistical analysis 

For all metrics considered, the Wilcoxon signed-rank test was 
computed at the subject-wise level using the SciPy Python library [30]. 
Statistical differences were considered for p-values < 0.05. 

4. Results 

The synthetic images inferred from the test set were evaluated both 
qualitatively and quantitatively. Qualitative results, comparing a slice of 
each of the three orthogonal planes of MPRAGE, MP2RAGE, and syn
MP2RAGE, are shown in Fig. 3. As can be observed, our generative 
approach synthetizes images that are consistent in the three planes and 
exhibit a visually evident increase in tissue contrast, with only a slight 
over-smoothing compared to the real MP2RAGE. In the qualitative 
evaluation, our image analysis expert judged the synMP2RAGE images 
of high quality, with good tissue contrast and low noise. The visual 
assessment revealed the presence of common MRI artefacts such as 
blurred areas, aliasing artefacts, and checkboard patterns in few slices of 
24 out of 36 subjects. However, analyzing the corresponding MPRAGE 
images, it was verified that all artefacts were already present in the 
original acquisitions. In Fig. 4 we illustrate the different types of 

artefacts found. Interestingly, for one subject the MP2RAGE was affected 
by strong motion whereas the MPRAGE and generated synMP2RAGE 
seem fine. Overall, our expert concluded that the GAN primarily learns 
an intensity mapping, and no new artefacts are introduced or removed, 
expect for the bias field which is much reduced or even removed. 

Residual images are presented in Fig. 5. Compared to the MPRAGE, 
we can notice that synMP2RAGE improves both the lesion and tissue 
contrast, showing high residual values. Looking at the residual with 
MP2RAGE, however, we see that, as expected, the method is not perfect 

Fig. 5. First row: example of a 2D axial slice of MPRAGE, synMP2RAGE, and MP2RAGE. Second row: the three residuals between the images above. The intensity 
values are normalized with zero mean and unit variance. 

Fig. 6. Cumulative histogram over the 36 cases of the testing set comparing the 
real contrasts and the generated one. The intensity peak of the background just 
below zero is omitted for visualization purposes. 
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and between the prevailing random noise, some border voxels along the 
CSF have high residuals. Moreover, in Fig. 6 we report the cumulative 
histogram over the 36 testing cases for MPRAGE, MPRAGE with N4 bias 
field correction, MP2RAGE, and synMP2RAGE. It can be seen that the 
bias field correction contributes to increasing the prominence of the two 
peaks of GM and WM. By contrast, in the synMP2RAGE histogram the 
two peaks, besides having greater prominence, are also farther apart 
from each other compared to the MPRAGE. As a consequence, the syn
MP2RAGE histogram almost matches the one of the real MP2RAGE, 
confirming the added value of the synthesized images. 

Results of the quantitative evaluation considering reference-based 
similarity metrics are reported in Table 1. We compare the metrics be
tween synMP2RAGE and the ground truth MP2RAGE and those between 

MPRAGE and the ground truth MP2RAGE. For all three metrics, syn
MP2RAGE outperforms the initial MPRAGE, achieving for the PSNR, 
NRMSE, and SSIM 31.39, 0.13, and 0.98, respectively. This shows that 
our method is transforming the MPRAGE input closer to the MP2RAGE. 

Turning now to the automatic segmentation evaluation, the syn
MP2RAGE images were assessed in terms of both the lesion and tissue 
masks obtained. Visual examples of lesion and tissue segmentations for 
the different contrasts are shown in Fig. 7. Upon closer inspection of this 
figure, the improvements of the synMP2RAGE segmentations over those 
of the MPRAGE can be easily appreciated. 

Regarding the automatic brain tissue segmentation results, Fig. 8 
depicts the boxplots of the Dice coefficient for the three main brain 
tissue types (WM, GM, and CSF). For each tissue type, synMP2RAGE 
significantly outperformed the MPRAGE (all p-values < 0.0001), 
reaching in particular for the WM a median value of over 0.94. 

Moving on now to consider the automatic MS lesion segmentation, 
we considered lesion-wise and voxel-wise metrics for WMLs and CLs. 
The top row of Fig. 9 shows the boxplots of lesion-wise true and false 
positives computed for each patient. No significant differences between 
any MRI contrast combination were found. The boxplots of the Dice 
coefficient and volume difference are presented in the bottom row of the 
same figure. For both metrics, the segmentation exploiting the syn
MP2RAGE significantly improves compared to both the MPRAGE and 
the DIR (p-values < 0.001), proving the added value of the synthesized 
images. Differences were not significant between synMP2RAGE and real 

Table 1 
Quantitative metrics and their standard deviation obtained for MPRAGE and 
synMP2RAGE compared to the reference real MP2RAGE. For all metrics com
parison p-values<0.001. ⥠: the higher the better, ⥡ the lower the better.  

Contrast PSNR ⥠ NRMSE ⥡ SSIM ⥠ 

MPRAGE 29.49 ± 0.73 0.17 ± 0.01 0.97 ± 0.01 
synMP2RAGE 31.39 ± 0.96 0.13 ± 0.01 0.98 ± 0.01  

Fig. 7. Comparison of the tissue and lesion segmentation obtained with MPRAGE, synMP2RAGE, and MP2RAGE. In the first row: zoom-in slices of the three 
contrasts. In the second row the relative tissue segmentation: in white the WM, light gray the GM, and dark gray the CSF. In the last row, the lesion segmentation is 
compared to the ground truth: red for WMLs and green for CLs. 
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Fig. 8. Metrics of the automated brain tissue segmentation obtained using MPRAGE and synMP2RAGE and considering the MP2RAGE as ground truth. First row: 
Dice coefficient for WM, GM, and CSF. Second row: the absolute volume difference for the same tissue types. 

Fig. 9. First row: WML and CL detection rate for the combination of input MRI contrasts considered. Second row: Dice coefficient and absolute volume difference for 
the same MRI contrasts. All comparisons not shown are not significant. 
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MP2RAGE (p-values > 0.05). Finally, the cortical and WM lesion 
detection rates were computed lesion-wise over the 36 testing cases for 
the different contrasts are reported in Table 2 (see the Supplementary 
material for the metrics of unimodal FLAIR model). We can observe that 
once again in terms of detection rate there are very minimal differences. 

5. Discussion 

In this work we present a tailored generative adversarial network for 
translating MPRAGE images to realistic-looking MP2RAGE ones. The 
MP2RAGE is an extension of the MPRAGE MRI sequence which shows a 
higher brain tissue contrast and is helpful for depicting MS lesions. 
Regardless of these advantages and its limited acquisition time (about 8 
min or even less if accelerated [31]), however, it is still not widely ac
quired in clinical routine MRI examinations. Our work aims at sup
porting MRI studies whenever MP2RAGE was not originally acquired. 
We evaluated the method on a test set of 36 MS patients. Qualitative 
results show that the generated synMP2RAGE is visually similar to the 
acquired MP2RAGE with only a slight over-smoothing (Fig. 3) and the 
GAN limits its task mainly to increase the tissue contrast (see the his
togram in Fig. 6). Importantly, our generator did not introduce any 
artificial artefact compared to the acquired MPRAGE images, supporting 
our choice of using a combination of L1, adversarial and perceptual loss 
during training. A quantitative evaluation was then performed consid
ering reference-based metrics, showing that synMP2RAGE out
performed MPRAGE on all metrics. Two different methods proposed in 
the literature were explored to evaluate the added value/applicability of 
the synthetic MP2RAGE images: automatic tissue and lesion segmenta
tion in MS patients. In both cases, using the synMP2RAGE images 
offered significant improvements in terms of Dice overlap and volume 
difference (p-values < 0.05 in the patient-wise analysis) over using 
MPRAGE images. Importantly, in terms of lesion segmentation, syn
MP2RAGE does not significantly differ from using the ground truth 
MP2RAGE (p-values > 0.05). 

There are several possible explanations supporting the fact that a 
GAN might be able to learn a mapping that translates MPRAGE image to 
MP2RAGE ones. For instance, a study has shown that while generating 
an exogenous MRI contrast obtained from a contrast agent might not be 
possible, synthesizing a missing contrast (such as T1 or T2) from others, 
is [32]. In our work, we aim at obtaining a variation of the MPRAGE 
contrast given as input to the generator. Both MPRAGE and MP2RAGE 
UNI are T1-weighted sequences with similar acquisition parameters (see 
Imaging subsection) and limited visual differences. Including a global 
skip connection in the GAN ensures that the correction produced is 
added to the input image, and therefore that the output does not greatly 
differ from the input. In this work, we do not consider synthetizing the 
MP2RAGE T1-map images, as these are slightly different visually and are 
currently not used by automated segmentation methods. However, if 
clinical studies will promote their usage, future work could focus on the 
generation of these quantitative images. 

We believe that our method of translating MPRAGE acquisitions to 
synthetic MP2RAGE images has a high practical value for several rea
sons. Firstly, our evaluation answers the question in Hagiwara et al. [17] 
about whether a synthetic MRI contrast could also improve the 

performance of an automated analysis tool: independently of the 
method considered, the synthetic MP2RAGE presented improved the 
output of both a CNN-based and a Bayesian segmentation approach. 
Secondly, as the MP2RAGE is now gradually being adopted for clinical 
use, generating its synthetic version for MRI studies where MP2RAGE 
was not originally acquired would allow homogenizing the datasets for 
retrospective analysis. Thirdly, experts might visually benefit from its 
increased tissue and lesion contrast as well. 

Furthermore, to the best of our knowledge, we present the first 
comparison of conventional and specialized MRI sequences for the 
automatic segmentation of MS lesions using a CNN. Interestingly, no 
significant differences (p-values > 0.05) in the patient-wise nor in the 
lesion-wise analysis were found in terms of cortical and white matter 
lesion detection rate between MPRAGE, MP2RAGE, synMP2RAGE, and 
DIR. This is in contrast with previous works showing that specialized 
MRI contrasts improve the detection of CLs both visually and automat
ically [7,8]. We hypothesize that this is because of the intrinsic learning 
process of a CNN, particularly different from classical machine learning 
approaches previously applied to this task [8,33]. The evaluation set, 
however, is limited to 36 patients and it does not allow us to draw strong 
conclusions. 

The generalisability of our results is subject to certain limitations. 
First, for all training and testing cases, the MPRAGE images were ac
quired with the same scanner and imaging protocol, including the same 
resolution. Therefore, the question of whether the proposed generative 
framework is able to learn a general mapping from different MPRAGE 
images to a common MP2RAGE remains open. Second, in this work we 
only examine MS patients in the early stages of the disease. The per
formance of our proposed method on patients with a high lesion load 
remains to be explored. Third, while our qualitative evaluation tends to 
indicate that no artefacts are introduced in the synMP2RAGE and that its 
usage supports automated segmentation tools, a radiological analysis of 
the generated image by experts would be needed in the context of 
evaluating the clinical value of synMP2RAGE. 

In conclusion, we propose a GAN which successfully translates 
MPRAGE images to realistic-looking MP2RAGE ones of MS patients. An 
extensive evaluation of the synthesized images with automatic seg
mentation tools proved that the generated MP2RAGE significantly im
proves both the tissue and lesion segmentation. The framework is fast to 
run at inference time and publicly available, and can, therefore, be 
useful to MRI and clinical researchers for multiple tasks, even beyond 
neuroimaging studies of MS patients. 
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